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Photon propagation in biological tissue is commonly described by the radiative transfer equation, while the
phase function in the equation represents the scattering characteristics of the medium and has significant
influence on the precision of solution and the efficiency of computation. In this work, we present a generalized
Delta-Eddington phase function to simplify the radiative transfer equation to an integral equation with respect
to photon fluence rate. Comparing to the popular diffusion approximation model, the solution of the integral
equation is highly accurate to model photon propagation in the biological tissue over a broad range of optical
parameters. This methodology is validated by Monte Carlo simulation.
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I. INTRODUCTION

Photon propagation through scattering media has attracted
a considerable interest for biomedical imaging applications.
Optical molecular imaging techniques are applied to reveal
molecular and cellular activities in vivo and study physi-
ological and pathological processes in various small animal
models �1�. Photon propagation in biological tissue is mainly
affected by absorption and scattering. The light propagation
model describes the interaction of photons with scattering
and absorbing media, and is essential in biomedical optics
for the development of imaging algorithms �2�. The radiative
transfer equation �RTE� well describes the photon propaga-
tion in biological tissues �2,3�. A number of computational
schemes were developed to solve RTE, including Monte
Carlo �MC� simulation techniques �4�, discrete ordinate
methods �5,6�, and so on �7�. Although MC simulation is a
proven and popular stochastic method, which provides a
highly accurate solution of the RTE, the high computational
cost makes it an improper choice for dealing with typical
inverse problems in the medical imaging field. The discrete
ordinate method discretizes the RTE in different solid angle
directions, and the resultant system of algebraic equations
has to be solved iteratively, which is computationally ineffi-
cient and expensive in practice. The diffusion approximation
�DA� is the most widely used as a photon propagation model
because of its high computational efficiency, but it only
works well in weakly absorbing and highly scattering media
�8,9�. However, the bioluminescence and fluorescence pro-
teins emit photons in the visible light spectrum, and the bio-
logical tissue presents significant photon absorption in this
spectral region �10�, resulting in a violation of the essential
assumption of the DA. As a result, the DA model would
generate a quite sizable discrepancy between the model pre-
diction and real data. In this paper, we present a generalized
Delta-Eddington phase function in RTE. Based on this new
definition of the Delta-Eddington phase function, RTE can be
significantly reduced to an integral equation for the photon
fluence rate. The solution of the integral equation allows an

accurate prediction to photon propagation in biological tis-
sues over a broad range of optical parameters.

II. PHASE APPROXIMATION MODEL

RTE is an energy balance equation with respect to photon
radiance and is expressed by �2,3�

v · �L�r,v� + ��a + �s�L�r,v�

= �s�
S2

L�r,v��p�v�,v�dv� +
1

4�
S�r�, r � � , �1�

where � is the region of interest, L�r ,v� is the photon radi-
ance at location r in the direction of unit vector v
�W mm−2 sr−1�, S�r� is the isotropic source �W mm−3�, �s is
the scattering coefficient �mm−1�, and �a is the absorption
coefficient �mm−1�. The scattering phase function p�v ,v��
gives the probability of a photon coming in the direction v�
being scattered into the direction v. The exact phase function
is generally unknown in practice. Several frequently used
phase functions are only its approximations, such as the
Delta-Eddington function and Henyey-Greenstein function.
Biological tissue strongly scatters photon in the forward di-
rection �11�. Hence, the phase function can be well modeled
by a generalized Delta-Eddington function �12,13� as fol-
lows:

p�v · v�� =
1

4�
�1 − f� +

1

2�
f��1 − v · v�� , �2�

where f � �−1, +1� is the weight factor measuring the aniso-
tropy of photon scattering, which is called the anisotropy
weight. The phase function is a linear combination between
the isotropic scattering and the strongly peaked forward scat-
tering. The original Delta-Eddington phase function rigidly
defines the parameter f as a fixed value g, where g is an
anisotropic factor defined as the mean value of the cosine of
the scattering angles. In contrast to the conventional interpre-
tation, the generalized Delta-Eddington function requires that
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the anisotropy weight be related to the photon absorbing and
scattering in the medium, and the optical properties of me-
dium are characterized by the anisotropy weight f along with
the absorption and scattering coefficients.

Substitution of Eq. �2� into Eq. �1� yields

v · �L�r,v� + �̃tL�r,v� =
1

4�
��̃s��r� + S�r��, r � � ,

�3�

where �̃s= �1− f��s, �̃t= �̃s+�a, and the photon fluence rate
��r� is defined by

��r� = �
S2

L�r,v�dv . �4�

Equation �3� is a linear, first-order differential equation de-
scribing the photon propagation through a heterogeneous
medium, and the solution L�r ,v� can be formulated as �14�

L�r,v� =
1

4�
�

0

R

��̃s�r − �v���r − �v� + S�r − �v��

�exp�− �
0

�

�̃t�r − tv�dt�d� + L�r − Rv,v�

�exp�− �
0

R

�̃t�r − tv�dt� , �5�

where R is a scalar so that r−Rv���, representing the dis-
tance from point r to the boundary �� along the direction v.
Integration of Eq. �5� over all the solid angles results in the
following integral formula:

��r� =
1

4�
�

S2
�

0

R

��̃s�r − �v���r − �v� + S�r − �v��

�exp�− �
0

�

�̃t�r − tv�dt�d�dv + �
S2

L�r − Rv,v�

�exp�− �
0

R

�̃t�r − tv�dt�dv . �6�

In the case of an optical experiment in a totally dark envi-
ronment, which no external photon travels in an inward di-
rection on the boundary ��, L�r−Rv ,v� in Eq. �6� would
vanish for matched refractive indices on the boundary. How-
ever, since the refractive index ntissue in biological tissues is
higher than the refractive index nair of the surrounding air, a
fraction of photons will be internally reflected at the bound-
ary. In this case, L�r−Rv ,v� describes the contribution from
the reflected photons on the boundary, and the reflected ra-
diance L�r−Rv ,v� on the boundary can be approximated by
�rd /4��1+rd����r� based on the relation between photon
transmission and reflection on boundary, where the internal
reflection coefficient rd can be calculated from rd=
−1.4399�−2+0.7099�−1+0.6681+0.0636� for relative re-
fractive index �=ntissue /nair �13�. Furthermore, with a vari-
able transformation from the polar coordinates r−�v to the

Cartesian coordinates r�, an integral equation with respect to
photon fluence rate is obtained,

��r� =
1

4�
�

�

��̃s�r����r�� + S�r���G�r,r��dr�

−
rd

4��1 + rd����

��r��G�r,r��� · ndr�, �7�

where

G�r,r�� =
1

	r − r�	2
exp�− �

0

	r−r�	
�̃t�r − t��dt� ,

unit vector �= �r−r�� / 	r−r�	, and n is the outward unit nor-
mal at r−R� on the boundary. Equation �7� is a well-posed
integral equation of the second kind, and allows an accurate
prediction to photon propagation in biological tissues. For
simplicity, we call Eq. �7� the phase approximation �PA�
equation because it is derived from an approximate phase
function. �̃s and �̃t �or, equivalently, �a, �s, and f� in Eq. �7�
represent the optical parameters. When the absorption coef-
ficient �a and scattering coefficient �s in the tissue are un-
known, we can directly determine the optical parameters �̃s
and �̃t using optical tomography techniques based on Eq. �7�
�15�. If the absorption coefficient �a, scattering coefficient
�s, and conventional anisotropic factor g in the tissue are
known, based on a simple homogenous numerical phantom,
such as a spherical or cylindrical object, with a known light
source setting, the photon fluence rate on the boundary of the
phantom can be generated using Monte Carlo simulation
with a appropriate phase function, e.g., the Henyey-
Greenstein phase function �16�. Then, a single parameter op-
timization can be performed to determine the anisotropy
weight f by matching the photon fluence rate on the phantom
boundary obtained from the phase approximation model to
the Monte Carlo simulation results.

III. NUMERICAL EXPERIMENTS

To compute the photon fluence rate from Eq. �7�, the re-
gion of interest � is discretized into finite elements with N
vertex nodes and the photon fluence rate ��r� is approxi-
mated in terms of nodal-based basis functions 	 j�r��j
=1,2 , . . . ,N� �17�,

��r� = 

j=1

N

��r j�	 j�r� . �8�

Substituting Eq. �8� into Eq. �7�, we obtain the following
matrix equation:

��� = M��� + B��� + �S� , �9�

where ��� consists of photon fluence rate values at the nodes
in �; M, B, and �S� represent the corresponding discrete
integral kernels in Eq. �7�, with the components of the ma-
trices defined by

mi,j =
1

4�
�

�

�̃s�r��	 j�r��G�ri,r��dr�,

CONG et al. PHYSICAL REVIEW E 76, 051913 �2007�

051913-2



bi,j =
rd

4��1 + rd����

	 j�r��G�ri,r���� · n�dr�,

si =
1

4�
�

�

S�r��G�ri,r��dr�. �10�

Solving the matrix equation �9�, the photon fluence rate is
given by

��� = K�S� , �11�

where I is a unit matrix and K= �I−M−B�−1. Equation �11�
is ready to be numerically implemented to compute the pho-
ton fluence rate.

Extensive numerical experiments were conducted to
verify the proposed method. In our experiments, a spherical
phantom of radius 10 mm was used to determine the aniso-
tropy weight f based on known optical parameter: absorp-
tion, scattering coefficients, and anisotropic factor g. A
spherical source of radius 0.6 mm was embedded into the
spherical phantom. The centers of the source located at �2.5,
2.5, 0.0�, and the light source had the power of 10 nanowatts.
The phantom was then discretized into 65 775 tetrahedral
elements and 12 044 nodes. A total of 2108 virtual detectors
were distributed over the phantom surface to record the pho-
ton fluence rate. MC simulation with a Henyey-Greenstein
phase function was performed with known optical param-
eters ��a, �s, and g� to obtain the photon fluence rate on
detectors. The anisotropy weight f is estimated by matching
the solution of the PA equation �7� to the photon fluence rate
obtained from the MC simulation. This procedure was per-
formed for four sets of optical parameters with various re-
duced scattering albedos defined by �s�1−g� /�a to obtain

the anisotropy weights. The computed anisotropy weights f
were shown in Table I.

We further performed the numerical experiments to com-
pare the accuracy between the MC, PA, and DA models. A
cylindrical phantom of diameter 20 mm and height 20 mm
was used. A spherical source of radius 1.0 mm was placed at
�−4.0,0.0,10.0� in the cylindrical phantom. The phantom
was then discretized into 25 335 tetrahedral elements and
4833 nodes for the numerical computation of the PA and DA
models. A total of 1226 virtual detectors were allocated over
the surface of the phantom to record the photon fluence rate.
The DA model coupled with the Robin boundary condition
�9�. The MC simulation used the Henyey-Greenstein phase
function. The PA, DA, and MC simulators were implemented
to generate the photon fluence rates at detectors on the
boundary of the phantom based on the four sets of optical
parameters in Table I. Figures 1�a�, 1�b�, 2�a�, 2�b�, 3�a�,
3�b�, 4�a�, and 4�b� presented the comparison between the
solution of PA, DA, and the MC simulation for the reduced
scattering albedos 3.57, 7.25, 56.25, and 100, respectively.
These results show that the solutions obtained via the PA
equation �7� are in excellent agreement with the results from
the MC simulation with a relative error below 3.7%, herein
the relative error is defined as 
detectors	�MC
−�PA	 /
detectors�MC. In contrast, we found that the solution
of the DA model was less accurate for relatively small re-
duced scattering albedo. For example, there are major dis-
crepancies between DA prediction and MC simulation for
the reduced scattering albedos 3.57 and 7.25, where the rela-
tive errors were as high as 31.2% and 14.6%, respectively, as
shown in Figs. 1�b� and 2�b�. As expected, for higher re-
duced scattering albedos 56.25 and 100 the DA model gave
good performance with relative errors 4.1% and 3.8%, re-
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FIG. 1. Comparison of the detected photon fluence rates ob-
tained from the MC simulation, PA, and DA models. �a� PA vs MC.
�b� DA vs MC with optical parameters �a=0.35 mm−1, �s

=12.5 mm−1, g=0.9, f =0.907, and �=1.37. Detectors are sorted by
the increasing order of photon fluence rates of MC simulation.
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FIG. 2. Comparison of the detected photon fluence rates ob-
tained from the MC simulation, PA, and DA models. �a� PA vs MC.
�b� DA vs MC with optical parameters �a=0.20 mm−1, �s

=14.5 mm−1, g=0.9, f =0.925, and �=1.37. Detectors are sorted by
the increasing order of photon fluence rates of MC simulation.

TABLE I. Optical parameters used in the numerical experiments.

�a �mm−1� �s �mm−1� �s �1−g� /�a g=0.9 �=1.37 f

0.35 12.50 3.57 0.9 1.37 0.907

0.20 14.50 7.25 0.9 1.37 0.925

0.016 9.0 56.25 0.9 1.37 0.957

0.008 8.0 100.0 0.9 1.37 0.961
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spectively, as shown in Figs. 3�b� and 4�b�. The numerical
experiments show that the photon fluence rate obtained from
the PA equation is more accurate than the results from the
DA model over a broad range of optical parameters. The
computational cost of the PA equation is much lower than the
cost of the direct computational method of RTE. The com-
putational time of the PA equation was about eight minutes,
while the DA model cost about three minutes in our numeri-
cal experiments. In addition, it is clear that the reconstructed
anisotropy weight f from known absorption, scattering coef-
ficients, and anisotropic factor g is independent of the geo-
metrical shape of media.

IV. DISCUSSION AND CONCLUSIONS

We have presented a generalized Delta-Eddington phase
function, which is a linear combination between the isotropic
scattering and the strongly peaked forward scattering with
the anisotropy weight f as a coefficient. The function allows
an accurate description for the anisotropic scattering charac-
teristic of medium with an optimal anisotropy weight. Dif-
ferent from the original Delta-Eddington phase function that
the anisotropy weight is independent of the absorbing and
scattering coefficients and is rigidly fixed to the anisotropic
factor g, our proposed generalized Delta-Eddington phase
function requires that the anisotropy weight be related to the
photon absorbing and scattering coefficients in the medium.
The anisotropy weight can be determined by optical tomog-
raphy techniques for unknown optical parameters or MC

simulation from known absorption, scattering coefficients,
and conventional anisotropic factor g. In the phase approxi-
mation model, the optical properties of medium are de-
scribed by the anisotropy weight f along with the absorption
and scattering coefficients instead of conventionally aniso-
tropic factor g. Using the generalized Delta-Eddington phase
function, the five-dimensional RTE was significantly simpli-
fied to a three-dimensional integral equation with respect to
the photon fluence rate. The computational complexity of the
PA equation is comparable to that of the DA model. Com-
pared to the diffusion approximation model derived from the
first-order approximation of the photon radiance, the phase
approximation model is based on the exact computation of
the photon radiance. The numerical experiments have dem-
onstrated that the solution of the PA equation is highly accu-
rate over a broad range of optical parameters by comparing
to the results of MC simulation in numerical phantom experi-
ments, while the DA model only works well in a highly
scattering and weakly absorbing medium. Based on our
promising numerical data, the proposed method has a great
potential for optical tomography, bioluminescence tomogra-
phy, fluorescence tomography, and other optical imaging ap-
plications.
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FIG. 4. Comparison of the detected photon fluence rates ob-
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�b� DA vs MC with optical parameters �a=0.008 mm−1, �s

=8.0 mm−1, g=0.9, f =0.961, and �=1.37. Detectors are sorted by
the increasing order of photon fluence rates of MC simulation.

Detectors

N
or

m
al

iz
ed

ph
ot

on
flu

en
ce

ra
te

0 200 400 600 800 1000 1200
10−2

10−1

100

PA
MC

(a)

Detectors

N
or

m
al

iz
ed

ph
ot

on
flu

en
ce

ra
te

0 200 400 600 800 1000 1200
10−2

10−1

100

DA
MC

(b)

FIG. 3. Comparison of the detected photon fluence rates ob-
tained from the MC simulation, PA, and DA models. �a� PA vs MC.
�b� DA vs MC with optical parameters �a=0.016 mm−1, �s

=9.0 mm−1, g=0.9, f =0.957, and �=1.37. Detectors are sorted by
the increasing order of photon fluence rates of MC simulation.
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